REVIEWS

Polim. Med. 2016, 46, 1, 101–104 © Copyright by Wroclaw Medical University
DOI: 10.17219/pim/65053 ISSN 0370-0747

Bacterial infections are a serious problem in musculoskeletal system surgery [1–3]. The complication rate is significantly higher in patients undergoing surgery because of acute injuries than in scheduled surgery [4]. In traumatology, the highest rate of infection is in patients with open fractures [5], and in orthopedic surgery in patients with implants such as an endoprosthesis [6]. In both cases, the problem is due to the antibiotic’s poor penetration into the operation site [7–10]. The kind of bacterial strains that we deal with also play a significant role in osteomyelitis. Very often these are strains resistant to the most commonly available antibiotics such as methicillin-resistant Staphylococcus aureus (MRSA), Enterobacter, Pseudomonas or Streptococcus ssp. [11]. Treatment of osteomyelitis depends on its clinical grade, which is estimated with the use of certain classifications, such as those created by Cierny and Mader or by Lew and Waldvogel [12–14]. Surgical debridement and blood supply restoration associated with general and local antibiotic therapy seem to be the best course in the treatment of osteomyelitis [15–17]. A lot of substances are used as drug carriers in local antibiotic therapy, but not all antibiotics may be used to create such medicines. The main problem is the antibiotic’s activity after combination with such carriers [18]. Gentamicin is one of the most commonly used antibiotics in local treatment because of its thermal stability and resistance to the sterilization process. In clinical practice, an implant made of poly(methyl methacrylate) (PMMA) and gentamicin has been in use for over 30 years [19, 20]. It is well known in Europe as a commercial product such as Septopal™ [21] (Fig. 1). PMMA is a biocompatible but not bioabsorbable biomaterial. The positive results obtained in osteomyelitis treatment using PMMA beads with gentamicin application have inspired studies on new kinds of polymeric drug carriers such as polycaprolactone, polyacrylic acid, polyanhydrides, poly(trimethylene carbonate), polylactide, polyglycolide and poly(trimethylene carbonate), are perspectives for the future. In this study, we have tried to briefly present all of these polymers and compare some of their features. We have concentrated on the pharmacokinetics and bioactivity of such implants, which are important aspects for their potential practical use (Polim. Med. 2016, 46, 1, 101–104).

Key words: polymers, gentamicin, osteomyelitis, drug carriers.
a localization for secondary bacterial biofilm creation after gentamicin release. Although the new, bioabsorbable materials seem to be better than PMMA because of the lack of necessity to remove them after their implantation, they have some serious disadvantages in comparison to PMMA beads.

In the Table 1 above, some of the main features of these polymers are presented.

Conclusions

The aim of this study was to present the polymeric materials used as a gentamicin carriers for local treatment in osteomyelitis. We also wanted to compare some of their pharmacokinetic features and bioactivity, which are important for potential clinical use. One problem was that we do not have enough data available in a few cases because a lot of the published studies have an introductory character and a lot of others have only been done on *in vitro* models. There is no possibility of a proper comparison in the case of data achieved on *in vivo* and *in vitro* models. Some side effects, such as the increased fibrotic tissue creation or decreased bone regeneration described in PGA, PLA and PCL use or the risk of secondary biofilm creation on PMMA beads, are generally known and proven in multiple stud-

Table 1. Comparison of pharmacokinetic features and bioactivity of polymeric implants with gentamicin

<table>
<thead>
<tr>
<th>Name of substance</th>
<th>Biodegradation ability</th>
<th>Time of biodegradation (in months) or necessity of removal</th>
<th>Time of gentamicin release (in weeks)</th>
<th>Amount of gentamicin released</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA (poly(methyl methacrylate))</td>
<td>no</td>
<td>needs to be removed</td>
<td>up to 16 [29]</td>
<td>20–70%</td>
<td>secondary bacterial biofilm creation</td>
</tr>
<tr>
<td>PCL (polycaprolactone)</td>
<td>yes</td>
<td>up to 30 [30]</td>
<td>up to 2</td>
<td>up to 80% [31]</td>
<td>uncontrolled growth of fibrotic tissue</td>
</tr>
<tr>
<td>PolyaCRYlic acid</td>
<td>yes</td>
<td>no in vivo tests available</td>
<td>no information</td>
<td>up to 100%</td>
<td>no serious side effects</td>
</tr>
<tr>
<td>Polyanhydrides</td>
<td>yes</td>
<td>up to a few (depending on the type and ratio of the monomers)</td>
<td>up to 4</td>
<td>up to 100%</td>
<td>no side effects</td>
</tr>
<tr>
<td>PLA (polylactide)</td>
<td>yes</td>
<td>72–84 [32]</td>
<td>up to 1.5</td>
<td>up to 100%</td>
<td>acidic degradation products and a subsequent decrease in local pH are the cause of decreased bone regeneration [33]</td>
</tr>
<tr>
<td>PGA (polyglycolide)</td>
<td>yes</td>
<td>12 [34]</td>
<td>up to 1.5</td>
<td>up to 100%</td>
<td>acidic degradation products and a subsequent decrease in local pH are the cause of decreased bone regeneration [33]</td>
</tr>
<tr>
<td>PTMC (poly-trimethylene carbonate)</td>
<td>yes</td>
<td>2</td>
<td>up to 2</td>
<td>up to 60% [26]</td>
<td>no side effects</td>
</tr>
</tbody>
</table>
Polymers as Carriers of Gentamicin

Acknowledgment. The authors would like to thank Bartosz Witkowski for his writing and editing services.

References

[14] Klemm K.: Polymers as Carriers of Gentamicin necessitates many specific tests including in vivo experiments on animal models. At present, they are one of the potential prospects in local antibiotic therapy development in the future.

Necessitates many specific tests including in vivo experiments on animal models. At present, they are one of the potential prospects in local antibiotic therapy development in the future.
DOI: 10.1016/j.msec.2015.09.053.

[31] Chang H.I., Lau Y.C., Yan C., Coombes A.G.: Controlled release of an antibiotic, gentamicin sulphate, from gravity spun

[32] Bergsma J.E., de Bruijn W.C., Rozema F.R., Bos R.R., Boering G.: Late degradation tissue response to poly(L-lactide) bone

[34] Pihlajamäki H.K., Salminen S.T., Tynninen O., Böstman O.M., Laitinen O.: Tissue restoration after implantation of poly-
glycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: An experimental study in rabbits. Calcif. Tissue
Int. 2010, 87, 90–98. DOI: 10.1007/s00223-010-9374-z.

Address for correspondence:
Jarosław Witkowski
Borowska 213
50-556 Wrocław
Poland
E-mail: witwitwit@wp.pl
tel.: +48 608 50 13 78

Conflict of interest: None declared

Received: 18.08.2016
Revised: 23.08.2016
Accepted: 7.09.2016